One-Step Carbon Coating and Polyacrylamide Functionalization of Fe3O4 Nanoparticles for Enhancing Magnetic Adsorptive-Remediation of Heavy Metals
نویسندگان
چکیده
Magnetic nanoparticles are used in adsorptive removal of heavy metals from polluted wastewater. However, their poor stability in an acidic medium necessitates their protection with a coating layer. Coating magnetic nanoparticles with carbon showed proper protection but the heavy metal removal efficiency was slightly weak. However, to boost the removal efficiencies of surface functionalization, polyacrylamide was applied to carbon-coated Fe3O4 nanoparticles. In this paper, to facilitate the synthesis process, one-step carbon coating and polyacrylamide functionalization were conducted using the hydrothermal technique with the aim of enhancing the adsorptive removal capacity of Fe3O4 nanoparticles towards some heavy metals such as Cu(II), Ni(II), Co(II), and Cd(II). The results showed that the one-step process succeeded in developing a carbon coating layer and polyacrylamide functionality on Fe3O4 nanoparticles. The stability of the magnetic Fe3O4 nanoparticles as an adsorbent in an acidic medium was improved due to its resistance to the dissolution that was gained during carbon coating and surface functionalization with polyacrylamide. The adsorptive removal process was investigated in relation to various parameters such as pH, time of contact, metal ion concentrations, adsorbent dose, and temperature. The polyacrylamide functionalized Fe3O4 showed an improvement in the adsorption capacity as compared with the unfunctionalized one. The conditions for superior adsorption were obtained at pH 6; time of contact, 90 min; metal solution concentration, 200 mg/L; adsorbent dose, 0.3 g/L. The modeling of the adsorption data was found to be consistent with the pseudo-second-order kinetic model, which suggests a fast adsorption process. However, the equilibrium data modeling was consistent with both the Langmuir and Freundlich isotherms. Furthermore, the thermodynamic parameters of the adsorptive removal process, including ∆G◦, ∆H◦, and ∆S◦, indicated a spontaneous and endothermic sorption process. The developed adsorbent can be utilized further for industrial-based applications.
منابع مشابه
One-Step Carbon Coating and Polyacrylamide Functionalization of Fe₃O₄ Nanoparticles for Enhancing Magnetic Adsorptive-Remediation of Heavy Metals.
Magnetic nanoparticles are used in adsorptive removal of heavy metals from polluted wastewater. However, their poor stability in an acidic medium necessitates their protection with a coating layer. Coating magnetic nanoparticles with carbon showed proper protection but the heavy metal removal efficiency was slightly weak. However, to boost the removal efficiencies of surface functionalization, ...
متن کاملInvestigation on magnetic and microwave behavior of magnetite nanoparticles coated carbon fibers composite
Radar absorbing materials, i.e. magnetite (Fe3O4) coated carbon fibers (MCCFs) were fabricated by electro-deposition technique. Black-colored single spinel phase Fe3O4 nanoparticles was easily synthesized by hydrothermal method using reduction of a Fe (III) - Triethanolamine complex in an aqueous alkaline solution at 60-80 ◦C. Uniform and compact Fe3O4 films were fabricated on nitric acid treat...
متن کاملRemoval of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles.
We have shown that superparamagnetic iron oxide (Fe3O4) nanoparticles with a surface functionalization of dimercaptosuccinic acid (DMSA) are an effective sorbent material for toxic soft metals such as Hg, Ag, Pb, Cd, and Tl, which effectively bind to the DMSA ligands and for As, which binds to the iron oxide lattices. The nanoparticles are highly dispersible and stable in solutions, have a larg...
متن کاملPreparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications
Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...
متن کاملPreparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications
Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 n...
متن کامل